A human chromosome made from dust?


From dust you came, to dust you shall return. 

If we are in fact made from dust, how do you explain it?

Living Dust

Click this link to access the video

This blog is actually two blogs in one:

Blog #1 can be found under the page tab: General Posts. This is the one you may want to check out first.

Blog #2 is about the fallacies associated with the study of science and how they interfere with the general pursuit of knowledge and discovery. These are under the page tab Rantings of a Mad Scientist.

Throughout Blog #1, you will find a variety of microphotographs, some of them repeated for emphasis. Here is an example of one of them:


   (click to enlarge)

It’s pretty, mysterious, and full of little beaded circles that appear to be emanating from a larger “mother ship”.  At least, that’s how my Ph.D. advisor described them at Ohio State University over 28 years ago. These were actually discovered after I had already completed my Ph.D., so you won’t find them in my dissertation or any subsequent manuscripts. They came out of mouse cells that were in the process of dying under the microscope. The green color is due to fluorescence from a dye the cells were exposed to that allows nucleic acids to light up under this kind of microscope.  I managed to “coax” them out of dying cells using dilute acid that partially degrades the DNA.

I have no idea of your level of mastery of biology over the years, but I am going to assume that you at least know something about human chromosomes and perhaps other mammals. If you don’t, you may need to do a quick google review before you go any further. If you find this intimidating or overwhelming, I will give you the “skinny” on it. You can always review it later. Here is how a typical textbook depicts a mammalian chromosome:


Looks like four weiners stuck together. If you check more closely, the textbook will indicate that each “weiner” is composed of a single, tightly wound, continuous thread of DNA covered with other materials like proteins. Such a complex is called chromatin. This thread travels from one short weiner to the adjacent long weiner. The weiners on the bottom are considered as “copies” of the ones on top as long as sex isn’t involved. The two weiners (long and short), together with their copies are connected together in the middle by a structure called a centromere.

Bacterial chromosomes are generally circular in shape and have a wide range of sizes. A circle with a circumference of 340 microns (millionth of a meter) would be in the lower size range. Breaking this circle and laying it out end to end gives you a linear length of 340 microns which is 34 times the diameter of an average human nucleus. There is more than a million microns of DNA within this nucleus. To give you some idea of this magnitude, check out the graphic below:

Nuclear DNA

That’s a lot of DNA to fit inside that tiny little nucleus, don’t you think? However, according to textbooks, all of that DNA is fused together into just 46 pieces of “rope”called chromosomes. Now imagine a piece of DNA like the one shown above breaking off or replicating from the main strand of a relatively small human chromosome, say one that is only 1700 times the length of the diameter of the nucleus. Now imagine this piece of DNA somehow coming back on itself and ligating the ends to form a  340 micron circle. Not much wiggle room is there? Even if there was, the chances of this  meandering 340 micron thread of DNA spontaneously doing this is pretty remote at best. Yet, somehow it happens. Textbooks indicate that pieces of DNA the size of bacterial chromosomes can form into small circles within the human nucleus. You can learn more about this under general postings.

Wouldn’t it make more sense if that piece of DNA was circular to begin with? Imagine again, circles of DNA attached to other circles like grapes on a vine, easily plucked off from the main body. The photomicrograph shown above shows exactly this, only the grapes are beaded circles.

You would think scientists would be jumping all over this, wouldn’t you? You would be wrong. Indeed, the greatest mystery of all may be why they are NOT jumping all over this. After all, it has been 28 years since they were first discovered, and still nothing crops up in the literature. Now why is that?

You will find more about this under Blog #2.  Suffice it to say, when a well-respected scientist tells you privately that “they will kill you for this!”, something is definitely rotten in Denmark, don’t you think?

Well, the stakes are high here. Many people are completely invested in a linear DNA human chromosome model, even to the point of sweeping aside discoveries such as these. Just check the literature and you’ll see what I mean. So in the great scheme of things, should it really matter to you how a human chromosome is put together? Well, only if you want to expand our knowledge of  genetic diseases, aging, human development, and cancer, among other things.

You realize this doesn’t have to be the end of this. I know there are some very wealthy philanthropists out there looking for a worthy cause. All they have to do is contact me to learn more and how to move it forward. If you know anyone like that, please ask them to contact me.

Questions and comments are welcome.

Best regards,

Dr. Frank Abernathy